Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38617266

RESUMEN

Ketamine is an NMDA-receptor antagonist that produces sedation, analgesia and dissociation at low doses and profound unconsciousness with antinociception at high doses. At high and low doses, ketamine can generate gamma oscillations (>25 Hz) in the electroencephalogram (EEG). The gamma oscillations are interrupted by slow-delta oscillations (0.1-4 Hz) at high doses. Ketamine's primary molecular targets and its oscillatory dynamics have been characterized. However, how the actions of ketamine at the subcellular level give rise to the oscillatory dynamics observed at the network level remains unknown. By developing a biophysical model of cortical circuits, we demonstrate how NMDA-receptor antagonism by ketamine can produce the oscillatory dynamics observed in human EEG recordings and non-human primate local field potential recordings. We have discovered how impaired NMDA-receptor kinetics can cause disinhibition in neuronal circuits and how a disinhibited interaction between NMDA-receptor-mediated excitation and GABA-receptor-mediated inhibition can produce gamma oscillations at high and low doses, and slow-delta oscillations at high doses. Our work uncovers general mechanisms for generating oscillatory brain dynamics that differs from ones previously reported, and provides important insights into ketamine's mechanisms of action as an anesthetic and as a therapy for treatment-resistant depression.

2.
Nature ; 627(8002): 149-156, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38418876

RESUMEN

The glymphatic movement of fluid through the brain removes metabolic waste1-4. Noninvasive 40 Hz stimulation promotes 40 Hz neural activity in multiple brain regions and attenuates pathology in mouse models of Alzheimer's disease5-8. Here we show that multisensory gamma stimulation promotes the influx of cerebrospinal fluid and the efflux of interstitial fluid in the cortex of the 5XFAD mouse model of Alzheimer's disease. Influx of cerebrospinal fluid was associated with increased aquaporin-4 polarization along astrocytic endfeet and dilated meningeal lymphatic vessels. Inhibiting glymphatic clearance abolished the removal of amyloid by multisensory 40 Hz stimulation. Using chemogenetic manipulation and a genetically encoded sensor for neuropeptide signalling, we found that vasoactive intestinal peptide interneurons facilitate glymphatic clearance by regulating arterial pulsatility. Our findings establish novel mechanisms that recruit the glymphatic system to remove brain amyloid.


Asunto(s)
Enfermedad de Alzheimer , Amiloide , Encéfalo , Líquido Cefalorraquídeo , Líquido Extracelular , Ritmo Gamma , Sistema Glinfático , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/prevención & control , Amiloide/metabolismo , Acuaporina 4/metabolismo , Astrocitos/metabolismo , Encéfalo/citología , Encéfalo/metabolismo , Encéfalo/patología , Líquido Cefalorraquídeo/metabolismo , Modelos Animales de Enfermedad , Líquido Extracelular/metabolismo , Sistema Glinfático/fisiología , Interneuronas/metabolismo , Péptido Intestinal Vasoactivo/metabolismo , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Estimulación Eléctrica
3.
bioRxiv ; 2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37163011

RESUMEN

The basolateral amygdala (BLA) is a key site where fear learning takes place through synaptic plasticity. Rodent research shows prominent low theta (∼3-6 Hz), high theta (∼6-12 Hz), and gamma (>30 Hz) rhythms in the BLA local field potential recordings. However, it is not understood what role these rhythms play in supporting the plasticity. Here, we create a biophysically detailed model of the BLA circuit to show that several classes of interneurons (PV, SOM, and VIP) in the BLA can be critically involved in producing the rhythms; these rhythms promote the formation of a dedicated fear circuit shaped through rhythmic gating of spike-timing-dependent plasticity. Each class of interneurons is necessary for the plasticity. We find that the low theta rhythm is a biomarker of successful fear conditioning. Finally, we discuss how the peptide released by the VIP cell may alter the dynamics of plasticity to support the necessary fine timing.

4.
J Neurophysiol ; 130(1): 86-103, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37314079

RESUMEN

Propofol-mediated unconsciousness elicits strong alpha/low-beta and slow oscillations in the electroencephalogram (EEG) of patients. As anesthetic dose increases, the EEG signal changes in ways that give clues to the level of unconsciousness; the network mechanisms of these changes are only partially understood. Here, we construct a biophysical thalamocortical network involving brain stem influences that reproduces transitions in dynamics seen in the EEG involving the evolution of the power and frequency of alpha/low-beta and slow rhythm, as well as their interactions. Our model suggests that propofol engages thalamic spindle and cortical sleep mechanisms to elicit persistent alpha/low-beta and slow rhythms, respectively. The thalamocortical network fluctuates between two mutually exclusive states on the timescale of seconds. One state is characterized by continuous alpha/low-beta-frequency spiking in thalamus (C-state), whereas in the other, thalamic alpha spiking is interrupted by periods of co-occurring thalamic and cortical silence (I-state). In the I-state, alpha colocalizes to the peak of the slow oscillation; in the C-state, there is a variable relationship between an alpha/beta rhythm and the slow oscillation. The C-state predominates near loss of consciousness; with increasing dose, the proportion of time spent in the I-state increases, recapitulating EEG phenomenology. Cortical synchrony drives the switch to the I-state by changing the nature of the thalamocortical feedback. Brain stem influence on the strength of thalamocortical feedback mediates the amount of cortical synchrony. Our model implicates loss of low-beta, cortical synchrony, and coordinated thalamocortical silent periods as contributing to the unconscious state.NEW & NOTEWORTHY GABAergic anesthetics induce alpha/low-beta and slow oscillations in the EEG, which interact in dose-dependent ways. We constructed a thalamocortical model to investigate how these interdependent oscillations change with propofol dose. We find two dynamic states of thalamocortical coordination, which change on the timescale of seconds and dose-dependently mirror known changes in EEG. Thalamocortical feedback determines the oscillatory coupling and power seen in each state, and this is primarily driven by cortical synchrony and brain stem neuromodulation.


Asunto(s)
Propofol , Humanos , Propofol/efectos adversos , Sincronización Cortical , Corteza Cerebral , Electroencefalografía , Inconsciencia/inducido químicamente , Tálamo
5.
Proc Natl Acad Sci U S A ; 120(2): e2123182120, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36598942

RESUMEN

Early-life experience enduringly sculpts thalamocortical (TC) axons and sensory processing. Here, we identify the very first synaptic targets that initiate critical period plasticity, heralded by altered cortical oscillations. Monocular deprivation (MD) acutely induced a transient (<3 h) peak in EEG γ-power (~40 Hz) specifically within the visual cortex, but only when the critical period was open (juvenile mice or adults after dark-rearing, Lynx1-deletion, or diazepam-rescued GAD65-deficiency). Rapid TC input loss onto parvalbumin-expressing (PV) inhibitory interneurons (but not onto nearby pyramidal cells) was observed within hours of MD in a TC slice preserving the visual pathway - again once critical periods opened. Computational TC modeling of the emergent γ-rhythm in response to MD delineated a cortical interneuronal gamma (ING) rhythm in networks of PV-cells bearing gap junctions at the start of the critical period. The ING rhythm effectively dissociated thalamic input from cortical spiking, leading to rapid loss of previously strong TC-to-PV connections through standard spike-timing-dependent plasticity rules. As a consequence, previously silent TC-to-PV connections could strengthen on a slower timescale, capturing the gradually increasing γ-frequency and eventual fade-out over time. Thus, ING enables cortical dynamics to transition from being dominated by the strongest TC input to one that senses the statistics of population TC input after MD. Taken together, our findings reveal the initial synaptic events underlying critical period plasticity and suggest that the fleeting ING accompanying a brief sensory perturbation may serve as a robust readout of TC network state with which to probe developmental trajectories.


Asunto(s)
Ritmo Gamma , Interneuronas , Ratones , Animales , Ritmo Gamma/fisiología , Interneuronas/fisiología , Células Piramidales/fisiología , Uniones Comunicantes , Parvalbúminas , Plasticidad Neuronal/fisiología
6.
Elife ; 122023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36718998

RESUMEN

Even during sustained attention, enhanced processing of attended stimuli waxes and wanes rhythmically, with periods of enhanced and relatively diminished visual processing (and subsequent target detection) alternating at 4 or 8 Hz in a sustained visual attention task. These alternating attentional states occur alongside alternating dynamical states, in which lateral intraparietal cortex (LIP), the frontal eye field (FEF), and the mediodorsal pulvinar (mdPul) exhibit different activity and functional connectivity at α, ß, and γ frequencies-rhythms associated with visual processing, working memory, and motor suppression. To assess whether and how these multiple interacting rhythms contribute to periodicity in attention, we propose a detailed computational model of FEF and LIP. When driven by θ-rhythmic inputs simulating experimentally-observed mdPul activity, this model reproduced the rhythmic dynamics and behavioral consequences of observed attentional states, revealing that the frequencies and mechanisms of the observed rhythms allow for peak sensitivity in visual target detection while maintaining functional flexibility.


Asunto(s)
Corteza Cerebral , Percepción Visual , Lóbulo Frontal , Ritmo Teta , Periodicidad , Estimulación Luminosa
7.
Proc Natl Acad Sci U S A ; 119(19): e2120808119, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35500112

RESUMEN

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is highly effective in alleviating movement disability in patients with Parkinson's disease (PD). However, its therapeutic mechanism of action is unknown. The healthy striatum exhibits rich dynamics resulting from an interaction of beta, gamma, and theta oscillations. These rhythms are essential to selection and execution of motor programs, and their loss or exaggeration due to dopamine (DA) depletion in PD is a major source of behavioral deficits. Restoring the natural rhythms may then be instrumental in the therapeutic action of DBS. We develop a biophysical networked model of a BG pathway to study how abnormal beta oscillations can emerge throughout the BG in PD and how DBS can restore normal beta, gamma, and theta striatal rhythms. Our model incorporates STN projections to the striatum, long known but understudied, found to preferentially target fast-spiking interneurons (FSI). We find that DBS in STN can normalize striatal medium spiny neuron activity by recruiting FSI dynamics and restoring the inhibitory potency of FSIs observed in normal conditions. We also find that DBS allows the reexpression of gamma and theta rhythms, thought to be dependent on high DA levels and thus lost in PD, through cortical noise control. Our study highlights that DBS effects can go beyond regularizing BG output dynamics to restoring normal internal BG dynamics and the ability to regulate them. It also suggests how gamma and theta oscillations can be leveraged to supplement DBS treatment and enhance its effectiveness.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Ganglios Basales/fisiología , Cuerpo Estriado , Humanos , Enfermedad de Parkinson/terapia , Núcleo Subtalámico/fisiología
8.
Prog Neurobiol ; 215: 102287, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35533813

RESUMEN

Persistent activity, the maintenance of neural activation over short periods of time in cortical networks, is widely thought to underlie the cognitive function of working memory. A large body of modeling studies has reproduced this kind of activity using cell assemblies with strengthened synaptic connections. However, almost all of these studies have considered persistent activity within networks with homogeneous neurons and synapses, making it difficult to judge the validity of such model results for cortical dynamics, which is based on highly heterogeneous neurons. Here, we consider persistent activity in a detailed, strongly data-driven network model of the prefrontal cortex with heterogeneous neuron and synapse parameters. Surprisingly, persistent activity could not be reproduced in this model without incorporating further constraints. We identified three factors that prevent successful persistent activity: heterogeneity in the cell parameters of interneurons, heterogeneity in the parameters of short-term synaptic plasticity and heterogeneity in the synaptic weights. We also discovered a general dynamic mechanism that prevents persistent activity in the presence of heterogeneities, namely a gradual drop-out of cell assembly neurons out of a bistable regime as input variability increases. Based on this mechanism, we found that persistent activity is recovered if heterogeneity is compensated, e.g., by a homeostatic plasticity mechanism. Cell assemblies shaped in this way may be potentially targeted by distinct inputs or become more responsive to specific tuning or spectral properties. Finally, we show that persistent activity in the model is robust against external noise, but the compensation of heterogeneities may prevent the dynamic generation of intrinsic in vivo-like irregular activity. These results may help informing the ongoing debate about the neural basis of working memory.


Asunto(s)
Modelos Neurológicos , Red Nerviosa , Potenciales de Acción/fisiología , Humanos , Red Nerviosa/fisiología , Neuronas/fisiología , Corteza Prefrontal/fisiología , Sinapsis/fisiología
9.
Neuron ; 109(13): 2047-2074, 2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34237278

RESUMEN

Despite increased awareness of the lack of gender equity in academia and a growing number of initiatives to address issues of diversity, change is slow, and inequalities remain. A major source of inequity is gender bias, which has a substantial negative impact on the careers, work-life balance, and mental health of underrepresented groups in science. Here, we argue that gender bias is not a single problem but manifests as a collection of distinct issues that impact researchers' lives. We disentangle these facets and propose concrete solutions that can be adopted by individuals, academic institutions, and society.


Asunto(s)
Equidad de Género , Investigadores , Sexismo , Universidades/organización & administración , Femenino , Humanos , Masculino , Investigación/organización & administración
10.
PLoS Comput Biol ; 17(4): e1008783, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33852573

RESUMEN

Current hypotheses suggest that speech segmentation-the initial division and grouping of the speech stream into candidate phrases, syllables, and phonemes for further linguistic processing-is executed by a hierarchy of oscillators in auditory cortex. Theta (∼3-12 Hz) rhythms play a key role by phase-locking to recurring acoustic features marking syllable boundaries. Reliable synchronization to quasi-rhythmic inputs, whose variable frequency can dip below cortical theta frequencies (down to ∼1 Hz), requires "flexible" theta oscillators whose underlying neuronal mechanisms remain unknown. Using biophysical computational models, we found that the flexibility of phase-locking in neural oscillators depended on the types of hyperpolarizing currents that paced them. Simulated cortical theta oscillators flexibly phase-locked to slow inputs when these inputs caused both (i) spiking and (ii) the subsequent buildup of outward current sufficient to delay further spiking until the next input. The greatest flexibility in phase-locking arose from a synergistic interaction between intrinsic currents that was not replicated by synaptic currents at similar timescales. Flexibility in phase-locking enabled improved entrainment to speech input, optimal at mid-vocalic channels, which in turn supported syllabic-timescale segmentation through identification of vocalic nuclei. Our results suggest that synaptic and intrinsic inhibition contribute to frequency-restricted and -flexible phase-locking in neural oscillators, respectively. Their differential deployment may enable neural oscillators to play diverse roles, from reliable internal clocking to adaptive segmentation of quasi-regular sensory inputs like speech.


Asunto(s)
Neuronas/fisiología , Sinapsis/fisiología , Estimulación Acústica/métodos , Corteza Auditiva/fisiología , Humanos
11.
J Math Neurosci ; 10(1): 19, 2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33201339

RESUMEN

Neural oscillations, including rhythms in the beta1 band (12-20 Hz), are important in various cognitive functions. Often neural networks receive rhythmic input at frequencies different from their natural frequency, but very little is known about how such input affects the network's behavior. We use a simplified, yet biophysical, model of a beta1 rhythm that occurs in the parietal cortex, in order to study its response to oscillatory inputs. We demonstrate that a cell has the ability to respond at the same time to two periodic stimuli of unrelated frequencies, firing in phase with one, but with a mean firing rate equal to that of the other. We show that this is a very general phenomenon, independent of the model used. We next show numerically that the behavior of a different cell, which is modeled as a high-dimensional dynamical system, can be described in a surprisingly simple way, owing to a reset that occurs in the state space when the cell fires. The interaction of the two cells leads to novel combinations of properties for neural dynamics, such as mode-locking to an input without phase-locking to it.

12.
Proc Natl Acad Sci U S A ; 117(49): 31459-31469, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33229572

RESUMEN

In predictive coding, experience generates predictions that attenuate the feeding forward of predicted stimuli while passing forward unpredicted "errors." Different models have suggested distinct cortical layers, and rhythms implement predictive coding. We recorded spikes and local field potentials from laminar electrodes in five cortical areas (visual area 4 [V4], lateral intraparietal [LIP], posterior parietal area 7A, frontal eye field [FEF], and prefrontal cortex [PFC]) while monkeys performed a task that modulated visual stimulus predictability. During predictable blocks, there was enhanced alpha (8 to 14 Hz) or beta (15 to 30 Hz) power in all areas during stimulus processing and prestimulus beta (15 to 30 Hz) functional connectivity in deep layers of PFC to the other areas. Unpredictable stimuli were associated with increases in spiking and in gamma-band (40 to 90 Hz) power/connectivity that fed forward up the cortical hierarchy via superficial-layer cortex. Power and spiking modulation by predictability was stimulus specific. Alpha/beta power in LIP, FEF, and PFC inhibited spiking in deep layers of V4. Area 7A uniquely showed increases in high-beta (∼22 to 28 Hz) power/connectivity to unpredictable stimuli. These results motivate a conceptual model, predictive routing. It suggests that predictive coding may be implemented via lower-frequency alpha/beta rhythms that "prepare" pathways processing-predicted inputs by inhibiting feedforward gamma rhythms and associated spiking.


Asunto(s)
Ritmo Gamma/fisiología , Modelos Neurológicos , Potenciales de Acción , Algoritmos , Animales , Conducta Animal , Macaca mulatta , Red Nerviosa/fisiología , Neuronas/fisiología , Análisis y Desempeño de Tareas , Factores de Tiempo
13.
Neurobiol Learn Mem ; 173: 107228, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32561459

RESUMEN

Cognition involves using attended information, maintained in working memory (WM), to guide action. During a cognitive task, a correct response requires flexible, selective gating so that only the appropriate information flows from WM to downstream effectors that carry out the response. In this work, we used biophysically-detailed modeling to explore the hypothesis that network oscillations in prefrontal cortex (PFC), leveraging local inhibition, can independently gate responses to items in WM. The key role of local inhibition was to control the period between spike bursts in the outputs, and to produce an oscillatory response no matter whether the WM item was maintained in an asynchronous or oscillatory state. We found that the WM item that induced an oscillatory population response in the PFC output layer with the shortest period between spike bursts was most reliably propagated. The network resonant frequency (i.e., the input frequency that produces the largest response) of the output layer can be flexibly tuned by varying the excitability of deep layer principal cells. Our model suggests that experimentally-observed modulation of PFC beta-frequency (15-30 Hz) and gamma-frequency (30-80 Hz) oscillations could leverage network resonance and local inhibition to govern the flexible routing of signals in service to cognitive processes like gating outputs from working memory and the selection of rule-based actions. Importantly, we show for the first time that nonspecific changes in deep layer excitability can tune the output gate's resonant frequency, enabling the specific selection of signals encoded by populations in asynchronous or fast oscillatory states. More generally, this represents a dynamic mechanism by which adjusting network excitability can govern the propagation of asynchronous and oscillatory signals throughout neocortex.


Asunto(s)
Ritmo beta/fisiología , Ritmo Gamma/fisiología , Memoria a Corto Plazo/fisiología , Redes Neurales de la Computación , Neuronas/fisiología , Corteza Prefrontal/fisiología , Electroencefalografía , Humanos
14.
PLoS Comput Biol ; 16(2): e1007300, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32097404

RESUMEN

Striatal oscillatory activity is associated with movement, reward, and decision-making, and observed in several interacting frequency bands. Local field potential recordings in rodent striatum show dopamine- and reward-dependent transitions between two states: a "spontaneous" state involving ß (∼15-30 Hz) and low γ (∼40-60 Hz), and a state involving θ (∼4-8 Hz) and high γ (∼60-100 Hz) in response to dopaminergic agonism and reward. The mechanisms underlying these rhythmic dynamics, their interactions, and their functional consequences are not well understood. In this paper, we propose a biophysical model of striatal microcircuits that comprehensively describes the generation and interaction of these rhythms, as well as their modulation by dopamine. Building on previous modeling and experimental work suggesting that striatal projection neurons (SPNs) are capable of generating ß oscillations, we show that networks of striatal fast-spiking interneurons (FSIs) are capable of generating δ/θ (ie, 2 to 6 Hz) and γ rhythms. Under simulated low dopaminergic tone our model FSI network produces low γ band oscillations, while under high dopaminergic tone the FSI network produces high γ band activity nested within a δ/θ oscillation. SPN networks produce ß rhythms in both conditions, but under high dopaminergic tone, this ß oscillation is interrupted by δ/θ-periodic bursts of γ-frequency FSI inhibition. Thus, in the high dopamine state, packets of FSI γ and SPN ß alternate at a δ/θ timescale. In addition to a mechanistic explanation for previously observed rhythmic interactions and transitions, our model suggests a hypothesis as to how the relationship between dopamine and rhythmicity impacts motor function. We hypothesize that high dopamine-induced periodic FSI γ-rhythmic inhibition enables switching between ß-rhythmic SPN cell assemblies representing the currently active motor program, and thus that dopamine facilitates movement in part by allowing for rapid, periodic shifts in motor program execution.


Asunto(s)
Ondas Encefálicas , Cuerpo Estriado/fisiología , Potenciales de Acción/fisiología , Animales , Biofisica , Dopamina/fisiología , Modelos Neurológicos
15.
Proc Natl Acad Sci U S A ; 116(33): 16613-16620, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31371513

RESUMEN

Working memory (WM) is a component of the brain's memory systems vital for interpretation of sequential sensory inputs and consequent decision making. Anatomically, WM is highly distributed over the prefrontal cortex (PFC) and the parietal cortex (PC). Here we present a biophysically detailed dynamical systems model for a WM buffer situated in the PC, making use of dynamical properties believed to be unique to this area. We show that the natural beta1 rhythm (12 to 20 Hz) of the PC provides a substrate for an episodic buffer that can synergistically combine executive commands (e.g., from PFC) and multimodal information into a flexible and updatable representation of recent sensory inputs. This representation is sensitive to distractors, it allows for a readout mechanism, and it can be readily terminated by executive input. The model provides a demonstration of how information can be usefully stored in the temporal patterns of activity in a neuronal network rather than just synaptic weights between the neurons in that network.


Asunto(s)
Ritmo beta/fisiología , Memoria a Corto Plazo/fisiología , Potenciales de Acción , Simulación por Computador , Lóbulo Parietal/fisiología , Factores de Tiempo
16.
Proc Natl Acad Sci U S A ; 116(17): 8564-8569, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30962383

RESUMEN

Classical accounts of biased competition require an input bias to resolve the competition between neuronal ensembles driving downstream processing. However, flexible and reliable selection of behaviorally relevant ensembles can occur with unbiased stimulation: striatal D1 and D2 spiny projection neurons (SPNs) receive balanced cortical input, yet their activity determines the choice between GO and NO-GO pathways in the basal ganglia. We here present a corticostriatal model identifying three mechanisms that rely on physiological asymmetries to effect rate- and time-coded biased competition in the presence of balanced inputs. First, tonic input strength determines which one of the two SPN phenotypes exhibits a higher mean firing rate. Second, low-strength oscillatory inputs induce higher firing rate in D2 SPNs but higher coherence between D1 SPNs. Third, high-strength inputs oscillating at distinct frequencies can preferentially activate D1 or D2 SPN populations. Of these mechanisms, only the latter accommodates observed rhythmic activity supporting rule-based decision making in prefrontal cortex.


Asunto(s)
Modelos Neurológicos , Vías Nerviosas/fisiología , Neuronas/fisiología , Corteza Prefrontal/fisiología , Cuerpo Estriado/fisiología
17.
Neuropharmacology ; 144: 155-171, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30352212

RESUMEN

Much of our understanding about how acetylcholine modulates prefrontal cortical (PFC) networks comes from behavioral experiments that examine cortical dynamics during highly attentive states. However, much less is known about how PFC is recruited during passive sensory processing and how acetylcholine may regulate connectivity between cortical areas outside of task performance. To investigate the involvement of PFC and cholinergic neuromodulation in passive auditory processing, we performed simultaneous recordings in the auditory cortex (AC) and PFC in awake head fixed mice presented with a white noise auditory stimulus in the presence or absence of local cholinergic antagonists in AC. We found that a subset of PFC neurons were strongly driven by auditory stimuli even when the stimulus had no associative meaning, suggesting PFC monitors stimuli under passive conditions. We also found that cholinergic signaling in AC shapes the strength of auditory driven responses in PFC, by modulating the intra-cortical sensory response through muscarinic interactions in AC. Taken together, these findings provide novel evidence that cholinergic mechanisms have a continuous role in cortical gating through muscarinic receptors during passive processing and expand traditional views of prefrontal cortical function and the contributions of cholinergic modulation in cortical communication.


Asunto(s)
Corteza Auditiva/metabolismo , Percepción Auditiva/fisiología , Corteza Prefrontal/metabolismo , Receptores Muscarínicos/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Asociación , Corteza Auditiva/efectos de los fármacos , Vías Auditivas/efectos de los fármacos , Vías Auditivas/metabolismo , Percepción Auditiva/efectos de los fármacos , Sincronización Cortical/efectos de los fármacos , Sincronización Cortical/fisiología , Ratones Transgénicos , Microelectrodos , Antagonistas Muscarínicos/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Optogenética , Corteza Prefrontal/efectos de los fármacos , Escopolamina/farmacología , Filtrado Sensorial/efectos de los fármacos , Filtrado Sensorial/fisiología , Vigilia
18.
J Math Neurosci ; 8(1): 13, 2018 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-30519798

RESUMEN

Theta (4-8 Hz) and gamma (30-80 Hz) rhythms in the brain are commonly associated with memory and learning (Kahana in J Neurosci 26:1669-1672, 2006; Quilichini et al. in J Neurosci 30:11128-11142, 2010). The precision of co-firing between neurons and incoming inputs is critical in these cognitive functions. We consider an inhibitory neuron model with M-current under forcing from gamma pulses and a sinusoidal current of theta frequency. The M-current has a long time constant (∼90 ms) and it has been shown to generate resonance at theta frequencies (Hutcheon and Yarom in Trends Neurosci 23:216-222, 2000; Hu et al. in J Physiol 545:783-805, 2002). We have found that this slow M-current contributes to the precise co-firing between the network and fast gamma pulses in the presence of a slow sinusoidal forcing. The M-current expands the phase-locking frequency range of the network, counteracts the slow theta forcing, and admits bistability in some parameter range. The effects of the M-current balancing the theta forcing are reduced if the sinusoidal current is faster than the theta frequency band. We characterize the dynamical mechanisms underlying the role of the M-current in enabling a network to be entrained to gamma frequency inputs using averaging methods, geometric singular perturbation theory, and bifurcation analysis.

19.
Micromachines (Basel) ; 9(9)2018 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-30424369

RESUMEN

We devised a scalable, modular strategy for microfabricated 3-D neural probe synthesis. We constructed a 3-D probe out of individual 2-D components (arrays of shanks bearing close-packed electrodes) using mechanical self-locking and self-aligning techniques, followed by electroless nickel plating to establish electrical contact between the individual parts. We detail the fabrication and assembly process and demonstrate different 3-D probe designs bearing thousands of electrode sites. We find typical self-alignment accuracy between shanks of <0.2° and demonstrate orthogonal electrical connections of 40 µm pitch, with thousands of connections formed electrochemically in parallel. The fabrication methods introduced allow the design of scalable, modular electrodes for high-density 3-D neural recording. The combination of scalable 3-D design and close-packed recording sites may support a variety of large-scale neural recording strategies for the mammalian brain.

20.
PLoS Comput Biol ; 14(8): e1006357, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30091975

RESUMEN

Oscillations are ubiquitous features of brain dynamics that undergo task-related changes in synchrony, power, and frequency. The impact of those changes on target networks is poorly understood. In this work, we used a biophysically detailed model of prefrontal cortex (PFC) to explore the effects of varying the spike rate, synchrony, and waveform of strong oscillatory inputs on the behavior of cortical networks driven by them. Interacting populations of excitatory and inhibitory neurons with strong feedback inhibition are inhibition-based network oscillators that exhibit resonance (i.e., larger responses to preferred input frequencies). We quantified network responses in terms of mean firing rates and the population frequency of network oscillation; and characterized their behavior in terms of the natural response to asynchronous input and the resonant response to oscillatory inputs. We show that strong feedback inhibition causes the PFC to generate internal (natural) oscillations in the beta/gamma frequency range (>15 Hz) and to maximize principal cell spiking in response to external oscillations at slightly higher frequencies. Importantly, we found that the fastest oscillation frequency that can be relayed by the network maximizes local inhibition and is equal to a frequency even higher than that which maximizes the firing rate of excitatory cells; we call this phenomenon population frequency resonance. This form of resonance is shown to determine the optimal driving frequency for suppressing responses to asynchronous activity. Lastly, we demonstrate that the natural and resonant frequencies can be tuned by changes in neuronal excitability, the duration of feedback inhibition, and dynamic properties of the input. Our results predict that PFC networks are tuned for generating and selectively responding to beta- and gamma-rhythmic signals due to the natural and resonant properties of inhibition-based oscillators. They also suggest strategies for optimizing transcranial stimulation and using oscillatory networks in neuromorphic engineering.


Asunto(s)
Potenciales de Acción/fisiología , Neuronas/fisiología , Corteza Prefrontal/fisiología , Animales , Ondas Encefálicas/fisiología , Simulación por Computador , Potenciales Postsinápticos Excitadores/fisiología , Humanos , Potenciales Postsinápticos Inhibidores/fisiología , Modelos Neurológicos , Técnicas de Placa-Clamp/métodos , Células Piramidales/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...